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CALCULATION OF TRANSPORT-EQUATION EIGENVALUES

UDC 519.632.4S. D. Algazin

The eigenvalue problem for the transport equation with variable coefficients in an arbitrary domain
with a smooth boundary is considered. A saturation-free numerical algorithm is constructed. Exam-
ples of numerical calculations are given, which prove the effectiveness of the proposed procedure.
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Introduction. Eigenvalue problems for the Laplace operator in an arbitrary smooth domain with constant
coefficients were considered in [1]. Yet, many problems in mathematical physics require eigenvalue problems for
a second-order equation with variable coefficients (see below) to be solved, which can be done by the steepest
descent method [2, pp. 572 and 586]. This method, in particular, makes it possible to reduce the solution of a
self-adjoint second-order equation to a sequence of solutions for the Poisson equation in the same domain, and
can also be applied to nonlinear equations [3]. Nevertheless, the numerical examples considered in [3] show not
too much optimism concerning the rapidity of convergence of the method. In the present study, a saturation-free
numerical algorithm (see [4] for terminology) is constructed, suitable for solving the second-order elliptic equation
with variable coefficients. As an example, the Neumann boundary condition is considered. In the course of the
presentation of the method, we will show how other boundary conditions can be treated.

1. Formulation of the Problem on Gas Filtration in a Porous Medium. The sought solution has
the form

∂(mρ)
∂t

+ div (ρv) = 0, (1.1)

where m = Vpor/V is the porosity (ranging in the interval of 0.15 to 0.22 for actual sedimentary beds), mρ is the
concentration, and v is the filtration rate (not to be confused with fluid velocity!).

This equation can be obtained from the law of conservation of mass
d

dt

∫
Vpor

ρ dτ =
d

dt

∫
V

ρmdτ = 0, (1.2)

where Vpor is the volume of pores and V is the total volume, both volumes being variable quantities. We apply the
formula of differentiation over a variable volume [5] to (1.2) and obtain (1.1).

The Darcy law holds for low-velocity fluid flows in an isotropic porous medium, i.e., for flows with low
Reynolds numbers (Re < Recr); this law can be expressed as

v = −(k̂/µ) grad p, (1.3)

where k̂ is the permeability coefficient measured in Darcy (1 D = 10−8/0.981 cm2) and µ is the dynamic viscosity.
For actual porous media, k̂ = 100–1000 mD (1 mD = 10−3 D). The permeability is a geometric characteristic of a
porous medium, determined by the particle size, shape, and packing.

The equation of state is

ρ =
M

RT

p

z(p)
,
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where M is the molar weight of the gas, R is the universal gas constant, and T is the absolute temperature; the
function z(p) is to be determined experimentally [z(p) = 1 for a perfect gas], i.e., the gas is barotropic.

Equation (1.1) refers to the case of no gas sources (gas wells) present in the bed. Generally, the continuity
equation is

∂ (mρ)
∂t

+ div (ρv) = f(z, t) (z ∈ G), (1.4)

where f(z, t) is some given function and G is a two dimensional domain with a smooth boundary ∂G ∈ C∞. Let
z = ϕ(ζ), where ζ = r eiθ is the conformal mapping of a unit circle into the domain G. We write Eq. (1.4) in new
variables [5, p. 180]:

ds2 = (dr2 + r2 dθ2)|ϕ′(ζ)|2 ⇒ g11 = |ϕ′(ζ)|2, g22 = r2|ϕ′(ζ)|2, √
g = |ϕ′(ζ)|2r,

grad p
∣∣∣
r

=
1

|ϕ′(ζ)|
∂p

∂r
, grad p

∣∣∣
θ

=
1

|ϕ′(ζ)|r
∂p

∂θ
.

Then, we obtain

∂ (mρ)
∂t

= |ϕ′(ζ)|−2L(w) + f(ζ, t), ζ = r eiθ, 0 6 r 6 1, 0 6 θ < 2π, |ζ| 6 1; (1.5)

L(w) =
1
r

∂

∂r

(
rk(r, θ)

∂w

∂r

)
+

1
r2

∂

∂θ

(
k(r, θ)

∂w

∂θ

)
. (1.6)

The following notation is used here: m = m(r, θ) is the porosity (a known function of coordinates), p = p(r, θ, t)
is the pressure (an unknown function of coordinates and time), k̂ = k̂(r, θ, p) = k(r, θ)ψ(p) is the permeability
(a known function of coordinates and pressure), ρ = ρ(p) is the density (a known function of pressure), µ = µ(p) is

the viscosity (a known function of pressure), and w(p) =
∫
ρ(p)ψ(p)
µ(p)

dp.

The quantities m, θ, and ψ are dimensionless quantities, and the quantities p, ρ, and µ have the following
dimensions: [p] = M/(LT 2), [ρ] = M/L3, [µ] = M/(LT ), [k] = L2, [w] = M/(L3T ), and [r] = L. Here M is
the mass unit, L is the length unit, and T is the time unit. The function f(ζ, t) = f(r, θ, t) is the intensity of gas
withdrawal, i.e., the mass of the gas released during a unit time in a unit volume of the bed. Introduction of the bed
thickness h = h(x, y) [i.e., bed height at the point (x, y) ∈ G in the domain under consideration] does not change
the form of (1.5), provided that m and k are substituted by mh and kh, respectively. In the latter case, we have
[f ] = M/(L2T ), i.e., the value of f gives the mass of the gas released during a unit time from a unit surface area of
the bed.

Thus, Eq. (1.5), together with (1.6), presents the sought formulation of the filtration problem. This equation
needs to be supplemented by the boundary condition

∂p

∂n

∣∣∣
∂G

= 0, (1.7)

which implies that no gas flux penetrates through the boundary ∂G [see (1.3)]. Note that the function w also
satisfies this boundary condition.

2. Discretization over Spatial Variables. For problem (1.5)–(1.7) to be discretized, we first perform
discretization of the operator L(w). Consider the spectral problem

L(w) + λw = 0,
∂w

∂r

∣∣∣
r=1

= 0. (2.1)

Note that

−
∫

|ζ|61

L(w)w dζ =
∫

|ζ|61

[
k
(∂w
∂r

)2

+
k

r2

(∂w
∂θ

)2]
dζ.

Thus, the boundary problem (2.1) is equivalent to the following extremum problem:

J(w) =
∫

|ζ|61

[
k
(∂w
∂r

)2

+
k

r2

(∂w
∂θ

)2

− λw2
]
dζ → min . (2.2)
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Indeed, δJ (variation of the functional J) is the principal linear part of the increment J(w + h) − J(w),
where h is an arbitrary smooth function. It is not difficult to show that

δJ = 2
∫

|ζ|61

[
kwrhr +

k

r2
wθhθ − λwh

]
dζ

= 2
{
krwrh

∣∣∣
r=1

−
∫

|ζ|61

[1
r

∂

∂r
(rkwr) +

1
r2

∂

∂θ
(kwθ) + λw

]
h dζ

}
= 0.

The function h is an arbitrary function; from here, relations (2.1) follow. To summarize, in searching for the
minimum of functional (2.2), it is not necessary to satisfy the Neumann boundary condition beforehand, i.e., this
boundary condition is natural.

To discretize functional (2.2), we use the quadrature formula [1]:∫
|ζ|61

f(ζ) dσ =
∑
ν,l

cνlfνl, fνl = f(rν eiθl),

rν = cos
(2ν − 1)π

4m
, ν = 1, 2, . . . ,m; θl =

2πl
N
, l = 0, 1, . . . , 2n; N = 2n+ 1.

(2.3)

This quadrature formula can be obtained by substituting the integrand by the following interpolation formula for
the function of two variables in a circle [4]:

(PMf)(r, θ) =
2n∑
l=0

m∑
ν=1

fνlLνl(r, θ), fνl = f(rν , θl),

Lνl(r, θ) =
2T2m(r)
NT ′2m(rν)

(Dn(θ − θl)
r − rν

− Dn(θ − θl + π)
r + rν

)
, (2.4)

Dn(θ) =
1
2

+
n∑

k=1

cos kθ, Tm(r) = cos (m arccos r).

The interpolation formula (2.4) possesses all required properties. Indeed, this formula is an exact one on all
polynomials of two variables of degree ω = min (n,m − 1). We denote the set of these polynomials as Pω and the
best approximation of the function f ∈ C[D] (D is a unit circle) by a polynomial from Pω as Eω. This defines the
projector

PM : C[D] → LM , LM = L(L1, . . . , LM ).

In addition, the following classical inequality holds:

|f(r, θ)− (PMf)(r, θ)| 6 (1 + |PM |∞)Eω(f). (2.5)

In (2.5), |PM |∞ is the norm of the projector PM . As in the one-dimensional case, inequality (2.5) shows that the
corresponding interpolation formula has no saturation. The norm of the projector PM satisfies the relation

|PM |∞ = O(ln2M),

and this estimate is easy to refine. With some assumptions concerning the smoothness of the class of interpolated
functions, we can estimate the rate of decay of the best approximation Eω as M → ∞ and the interpolation
inaccuracy of (2.4).

Let

f(r, θ) = (PMf)(r, θ) + ρM (r, θ; f),

where ρM (r, θ; f) is the interpolation error of (2.4) (remainder of interpolation). Then, the following Babenko
theorem holds [4].
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Theorem 1. Consider a class of functions HM
∞ (K;D) ⊂ C(D) that satisfy the conditions∣∣∣ ∂k+lf

∂xk ∂yl

∣∣∣ 6 K, k + l 6 µ,

in a circle D. Then, provided that f ∈ HM
∞ (K;D), we have

|ρM ( · ; f)|∞ 6 cµKM
−µ/2 log2M, (2.6)

where cµ is some constant that depends on µ.
Thus, inspection of (2.6) shows that, with an identical number M of interpolation nodes, the rate of decay of

the interpolation inaccuracy of (2.4) increases with increasing µ, i.e., with increasing smoothness of the interpolated
function f . This means that the interpolation formula has no saturation.

Based on (2.4), we can easily construct a quadrature formula for definite integrals, provided that the inte-
gration domain is a circle. Indeed, the substitution of the integrand by (2.4) yields the quadrature formula (2.3),
where dσ is an element of area, cνl are the weighting coefficients, and δ(f) is the error. For cνl, we have

cνl =
∫
D

Lνl(r, θ) dσ;

hence, these coefficients are independent of l. We introduce into the present consideration a block-diagonal matrix

C = diag (c1, c2, . . . , cm),

where cν (ν = 1, 2, . . . ,m) are some diagonal N ×N matrices with identical diagonal numbers. For the inaccuracy
of the quadrature formula, we have the following estimate [4]:

|δ(f)| 6 2πEω(f).

Note that all cνl are positive if the total number of interpolation nodes is sufficiently large.
For the coefficients of the quadrature formula (2.3), we have the expression

cν =
4πrν

m(2nν + 1)

(cosψν

2
+

m−1∑
s=3(2)

ts cos sψν

)
,

ts =
1

1 + (−1)(s−1)/2s
, ψν =

(2ν − 1)π
4m

, s > 1 is an odd number,

and (∂w
∂r

)
ζ=ζνl

=
∑
µ,p

Hνl,µpwµp,
(∂w
∂θ

)
ζ=ζνl

=
N∑

p=1

Blpwνp.

The matrices B and H can be obtained by differentiation of the interpolation formula (2.4):

Blp =
2
N

n∑
k=1

k sin k
2π(l − p)

N
.

To obtain the matrix H, we differentiate (2.4) with respect to r. First, we introduce the designations

A(1)
µν =

d

dr

( T2m(r)
(r − rν)T ′2m(rν)

)
r=rµ

=
1
m

2m−1∑
s=1

s cos sψν sin sψµ

sinψµ
,

A(2)
µν =

d

dr

( T2m(r)
(r + rν)T ′2m(rν)

)
r=rµ

= − 1
m

2m−1∑
s=1

s(−1)s cos sψν sin sψµ

sinψµ
.

Then, we perform the differentiation of (2.4) with respect to r; this yields

du(r, θ)
dr

∣∣∣
r=rµ
θ=θp

=
m∑

ν=1

(
A(1)

µν uνp −
2
N

2n∑
l=0

A(2)
µνDn(θp + π − θl)uνl

)
,
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TABLE 1
Size

√
λ2

√
λ6

√
λ11

√
λ16

8× 11 1.76 3.77 5.2 6.9
10× 21 1.7751 3.72 5.16 6.5
15× 31 1.776 235 57 3.7317 5.1770 6.4787

TABLE 2
Size

√
λ2 · 10−7

√
λ6 · 10−7

√
λ11 · 10−7

√
λ16 · 10−7

√
λ21 · 10−6

8× 11 2.8451 5.8268 9.2409 1.2075 1.4927
10× 21 2.5447 6.5814 9.3812 1.3895 1.5927
15× 31 2.4840 7.0164 10.0838 1.1905 1.4384
20× 41 2.5558 7.1376 9.5192 1.0873 1.4266

where

Dn(θp + π − θl) =
1
2

+
n∑

k=1

(−1)k cos k(θp − θl) ⇒ Hµp,νl = A(1)
µν δpl −

2
N
A(2)

µνDn(θp + π − θl).

It can be easily seen that H is an h-matrix [1]; hence, this matrix can be represented as

H =
2
N

n∑ ′

k=0

Λk ⊗ hk. (2.7)

Here, the prime at the summation sign indicates that the term with k = 0 should be taken with the coefficient 1/2,
Λk (k = 0, 1, . . . , n) is a matrix of size m×m, hk (k = 0, 1, . . . , n) is a matrix of size N ×N :

hkij = cos (2πk(i− j)/N), i, j = 1, 2, . . . , N

(symbol ⊗ denotes the Kronecker product of matrices). Here, the matrices Λk have the form

Λkµν = (−1)k+1A(2)
µν +A(1)

µν .

Thus,

Λ2k,µν =
2
m

2m−1∑
s=2(2)

s cos sψν sin sψµ

sinψµ
, Λ2k+1,µν =

2
m

2m−1∑
s=1(2)

s cos sψν sin sψµ

sinψµ
.

Below, we denote these matrices as Λ(k)
µν . We write (2.7) in more detail:

Hνl,µp =
2
N

n∑ ′

k=0

Λ(k)
νµ cos k

2π(p− l)
N

, Hνl,µ̃l̃ =
2
N

n∑ ′

q=0

Λ(q)
νµ̃ cos q

2π(l − l̃)
N

.

Using the quadrature formula (2.3), we transform functional (2.2) into the following quadratic form:

J(w) =
∑
ν,l

cνl

[
kνl

(∂w
∂r

)2

ζ=ζνl

+
kνl

r2ν

(∂w
∂θ

)2

ζ=ζνl

+ λw2
νl

]
. (2.8)

Differentiating (2.8) with respect to wµ̃l̃, we obtain

∑
µ,p

Bµ̃l̃,µpwµp +
N∑

p=1

Aµ̃

l̃p
wµ̃p − λcµ̃wµ̃l̃ = 0,

where

Bµ̃l̃,µp =
4
N2

n∑ ′

k=0

n∑ ′

q=0

{ m∑
ν=1

cνΛ(k)
νµ Λ(q)

νµ̃

2n∑
l=0

kνl cos k
2π(p− l)

N
cos q

2π(l − l̃)
N

}
,

Aµ̃

l̃p
=

4
N2

cµ̃
r2µ̃

n∑
k=1

n∑
q=1

kq
{ N∑

l=1

kµ̃l sin k
2π(l − p)

N
sin q

2π(l − l̃)
N

}
.
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This is the sought discrete analog of the eigenvalue problem

div (k gradw) + λw = 0, r < 1,
∂w

∂r

∣∣∣
r=1

= 0.

The discretization error can be estimated as described in [1] (see also [6]).
3. Numerical Results. Problem (2.1) was numerically solved in a circle (k = 1) and in a disturbed

circle (epitrochoid, k = 1, k 6= 1). For the circle, the eigenvalues
√
λi (i = 1, 2, . . . ) are known: they are zeros

of the Bessel function derivative. A comparison of the values of
√
λi calculated for the circle with exact values

shows that they are identical to the forth digit after the decimal point even on a 3 × 7 grid. Yet, this accuracy is
worse than that provided by the procedure described in [1] for the equation with constant coefficients. In addition,
we performed calculations for the epitrochoid [ϕ(ζ) = ζ(1 + εζn), ε = 0.0625, n = 12]; for this epitrochoid, the
calculated eigenvalues are summarized in Table (3.9) in [1]. The data obtained by the present procedure are listed
in Table 1 (accurate to all signs coincident with those in [1]).

Yet another calculation run was performed for the same epitrochoid with the function

k(r, θ) = k0(0.1 + r2)(sin 12θ + 1.1), k0 = 10−13/0.981 m2 = 0.1 D.

The results are summarized in Table 2.
Thus, it can be concluded that the accuracy in calculating the eigenvalues by the present procedure is

admissible, and the discretization over spatial variables is adequate.
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