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CALCULATION OF TRANSPORT-EQUATION EIGENVALUES

S. D. Algazin UDC 519.632.4

The eigenvalue problem for the transport equation with variable coefficients in an arbitrary domain

with a smooth boundary is considered. A saturation-free numerical algorithm is constructed. Exam-

ples of numerical calculations are given, which prove the effectiveness of the proposed procedure.
Key words: transport equation, filtration, eigenvalue problem.

Introduction. Eigenvalue problems for the Laplace operator in an arbitrary smooth domain with constant
coefficients were considered in [1]. Yet, many problems in mathematical physics require eigenvalue problems for
a second-order equation with variable coefficients (see below) to be solved, which can be done by the steepest
descent method [2, pp. 572 and 586]. This method, in particular, makes it possible to reduce the solution of a
self-adjoint second-order equation to a sequence of solutions for the Poisson equation in the same domain, and
can also be applied to nonlinear equations [3]. Nevertheless, the numerical examples considered in [3] show not
too much optimism concerning the rapidity of convergence of the method. In the present study, a saturation-free
numerical algorithm (see [4] for terminology) is constructed, suitable for solving the second-order elliptic equation
with variable coefficients. As an example, the Neumann boundary condition is considered. In the course of the
presentation of the method, we will show how other boundary conditions can be treated.

1. Formulation of the Problem on Gas Filtration in a Porous Medium. The sought solution has
the form

0
% + div (pv) = 0, (1.1)
where m = V,,,,/V is the porosity (ranging in the interval of 0.15 to 0.22 for actual sedimentary beds), mp is the
concentration, and v is the filtration rate (not to be confused with fluid velocity!).
This equation can be obtained from the law of conservation of mass
d d
- dr = — dr =0 1.2
o | PdT dt/me ; (1.2)
Voor 1%
where Vo, is the volume of pores and V' is the total volume, both volumes being variable quantities. We apply the
formula of differentiation over a variable volume [5] to (1.2) and obtain (1.1).
The Darcy law holds for low-velocity fluid flows in an isotropic porous medium, i.e., for flows with low

Reynolds numbers (Re < Reg,); this law can be expressed as

v = —(k/p) gradp, (1.3)
where k is the permeability coefficient measured in Darcy (1 D = 1078/0.981 ¢cm?) and p is the dynamic viscosity.
For actual porous media, k = 100-1000 mD (1 mD = 1073 D). The permeability is a geometric characteristic of a
porous medium, determined by the particle size, shape, and packing.

The equation of state is
M p
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where M is the molar weight of the gas, R is the universal gas constant, and T is the absolute temperature; the
function z(p) is to be determined experimentally [z(p) = 1 for a perfect gas], i.e., the gas is barotropic.

Equation (1.1) refers to the case of no gas sources (gas wells) present in the bed. Generally, the continuity
equation is

9 (mp)
ot

where f(z,t) is some given function and G is a two dimensional domain with a smooth boundary 0G € C*°. Let
2z = p(C), where ¢ = re' is the conformal mapping of a unit circle into the domain G. We write Eq. (1.4) in new
variables [5, p. 180]:

ds® = (dr* + 72 d6*) | (O = g =19 (QF g2 =71 (P, Vg=I¢' ()P,

1 9p 1 dp

+div (pv) = f(z,1) (z € G), (1.4)

I“adp = a radp = ’ an
SRCPL =il o Bl T (Ol 00
Then, we obtain
“52” =PI Lw) + f(¢,1),  ¢(=re’, 0<r<1, 0<f<2r, [¢<1; (1.5)
190 ow 1 0 ow
Lw) =~ E(rk(r, 9) 5) + 3 %(k(r,f)) @) (1.6)

The following notation is used here: m = m(r,8) is the porosity (a known function of coordinates), p = p(r,0,t)
is the pressure (an unknown function of coordinates and time), k& = k(r,0,p) = k(r,0)y(p) is the permeability
(a known function of coordinates and pressure), p = p(p) is the density (a known function of pressure), u = pu(p) is

p(p)¥(p) dp
u(p) '

The quantities m, 6, and v are dimensionless quantities, and the quantities p, p, and p have the following
dimensions: [p] = M/(LT?), [p| = M/L3, [u] = M/(LT), [k] = L?, [w] = M/(L?*T), and [r] = L. Here M is
the mass unit, L is the length unit, and T is the time unit. The function f(¢{,t) = f(r,6,t) is the intensity of gas
withdrawal, i.e., the mass of the gas released during a unit time in a unit volume of the bed. Introduction of the bed
thickness h = h(z,y) [i-e., bed height at the point (z,y) € G in the domain under consideration| does not change
the form of (1.5), provided that m and k are substituted by mh and kh, respectively. In the latter case, we have
[f] = M/(L*T), i.e., the value of f gives the mass of the gas released during a unit time from a unit surface area of
the bed.

Thus, Eq. (1.5), together with (1.6), presents the sought formulation of the filtration problem. This equation
needs to be supplemented by the boundary condition

Jp
— 1.
onlac 0, (1.7)

the viscosity (a known function of pressure), and w(p) = /

which implies that no gas flux penetrates through the boundary 9G [see (1.3)]. Note that the function w also
satisfies this boundary condition.

2. Discretization over Spatial Variables. For problem (1.5)—(1.7) to be discretized, we first perform
discretization of the operator L(w). Consider the spectral problem

L(w) + Aw =0, %—1: " =0. (2.1)
Note that
ow\2 k /0w\?2
- / L{w)wde = / #(5r) = (5g) |4
[¢I<1 [¢I<t

Thus, the boundary problem (2.1) is equivalent to the following extremum problem:

J(w) = / [k(%r + ﬁ(%)Q — /\wQ} d¢ — min. (2.2)

2
r
I¢I<1



Indeed, ¢J (variation of the functional J) is the principal linear part of the increment J(w + h) — J(w),
where h is an arbitrary smooth function. It is not difficult to show that

5] =2 / [k;wrhr + K phy — )\wh} ac

7'2
ci<t
19 10
- 2{krwrh - / [; S (rhw,) + = = (kwg) + Aw} hdg} =0.
i<t

The function h is an arbitrary function; from here, relations (2.1) follow. To summarize, in searching for the
minimum of functional (2.2), it is not necessary to satisfy the Neumann boundary condition beforehand, i.e., this
boundary condition is natural.

To discretize functional (2.2), we use the quadrature formula [1]:

[ 1@ do =Y cutu  fu= e,
Ici<t wl

2.3)
2v—1 2ml (
rl,:cosu7 v=12,...,m; t9l:i l=0,1,...,2n; N =2n-+1.

4m
This quadrature formula can be obtained by substituting the integrand by the following interpolation formula for
the function of two variables in a circle [4]:

2n m

(Puf)0) = DN furLoa(r,0),  fur = F(ru,01),

=0 v=1

Ll,l(’f', 0) =

275, (1) (Dn(ﬂ —0;) D,(6-06,+ 7r)>,

NT} (1) r—T, B r+r,

D, (0) = % + Z cos kb, T (r) = cos (marccosr).
k=1

The interpolation formula (2.4) possesses all required properties. Indeed, this formula is an exact one on all
polynomials of two variables of degree w = min (n,m — 1). We denote the set of these polynomials as P,, and the
best approximation of the function f € C[D] (D is a unit circle) by a polynomial from P,, as E,. This defines the
projector

Py:  C[D] — LM, IM = L(Ly,...,Ly).
In addition, the following classical inequality holds:

£ (r,0) = (Pa f)(r, 0)] < (1 + |Pasloc) Eus (f)- (2.5)

In (2.5), |Par|oo is the norm of the projector Pys. As in the one-dimensional case, inequality (2.5) shows that the
corresponding interpolation formula has no saturation. The norm of the projector P, satisfies the relation

|Par]oe = O(In? M),

and this estimate is easy to refine. With some assumptions concerning the smoothness of the class of interpolated
functions, we can estimate the rate of decay of the best approximation F, as M — oo and the interpolation
inaccuracy of (2.4).

Let

F(r,0) = (Paf)(r,0) + par (1,0 f),

where ppr(r,0; f) is the interpolation error of (2.4) (remainder of interpolation). Then, the following Babenko
theorem holds [4].
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Theorem 1. Consider a class of functions HM (K; D) C C(D) that satisfy the conditions

ak-‘rlf
——— | <K, k+1<u,
Dt 3yl’ thsH
in a circle D. Then, provided that f € HM (K; D), we have
loa (-5 f)loo < cu KM ™#/2 10g? M, (2.6)

where ¢, is some constant that depends on p.

Thus, inspection of (2.6) shows that, with an identical number M of interpolation nodes, the rate of decay of
the interpolation inaccuracy of (2.4) increases with increasing p, i.e., with increasing smoothness of the interpolated
function f. This means that the interpolation formula has no saturation.

Based on (2.4), we can easily construct a quadrature formula for definite integrals, provided that the inte-
gration domain is a circle. Indeed, the substitution of the integrand by (2.4) yields the quadrature formula (2.3),
where do is an element of area, ¢,; are the weighting coefficients, and J(f) is the error. For ¢,;, we have

Cyl = /Lvl(rv 9) do;
D
hence, these coeflicients are independent of [. We introduce into the present consideration a block-diagonal matrix
C= dlag (Clv C2y .- 7Cm)7

where ¢, (v =1,2,...,m) are some diagonal N X N matrices with identical diagonal numbers. For the inaccuracy
of the quadrature formula, we have the following estimate [4]:

0()] < 2mEL(f).

Note that all ¢,; are positive if the total number of interpolation nodes is sufficiently large.
For the coefficients of the quadrature formula (2.3), we have the expression

4mr cos e
v = : i ts 1/)7

¢ m(2n, + 1) ( 2 Z cos 5

s=3(2)

1 b, = 2v— D7

s > 1 is an odd number,

7

4m

and

ow ow al
(7) = ZHVLM?“’MM (7> = ZBlpwVp'
Or/e=tn 4= 99/ c=c =
The matrices B and H can be obtained by differentiation of the interpolation formula (2.4):

2 — o2m(l —
By, = NZkSinkw.
k=1

To obtain the matrix H, we differentiate (2.4) with respect to r. First, we introduce the designations

)

A = () | Ly scosstysinsy
=Ty m

e de N (e — 1) T8, (1) — sin 1,

2m—1

d Tom () 1 s(—1)® cos st sin sy
A<2):7((2—)r:7‘“ :_E Z:l H.

e dr N (r 4 )Ty, (1) sin 1,

Then, we perform the differentiation of (2.4) with respect to r; this yields

m 2n
2
S—— Z (AELIV)UVp - N Z A/(sz) Dn(op + 7= al)uul)a
0=0p v=1 1=0

du(r,0)
dr
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TABLE 1

Size VA2 Ve VA1l Ve
8 x 11 1.76 3.77 5.2 6.9
10 x 21 1.7751 3.72 5.16 6.5
15 x 31 1.776 23557 3.7317 5.1770 6.4787
TABLE 2
Size VAz 1077 Vg - 1077 VA1 - 1077 VA - 1077 Vg1 - 1076
8 x 11 2.8451 5.8268 9.2409 1.2075 1.4927
10 x 21 2.5447 6.5814 9.3812 1.3895 1.5927
15 x 31 2.4840 7.0164 10.0838 1.1905 1.4384
20 x 41 2.5558 7.1376 9.5192 1.0873 1.4266
where
RN Ws 2 4@
Dn(fy +7—60) = 5 Z Feosk(f, —6) = Hyupot = A0 — <5 A D (0 + 7 — 601).
k=
It can be easily seen that H is an h-matrix [1]; hence, this matrix can be represented as
n
25 Mok (2.7)
=N k k- :
k=0
Here, the prime at the summation sign indicates that the term with k& = 0 should be taken with the coefficient 1/2,
Ar (k=0,1,...,n) is a matrix of size m x m, h (k=0,1,...,n) is a matrix of size N x N:

h;ﬂ'j:cos(Qﬂ'k(i—j)/N), ,j=1,2,...,N
(symbol ® denotes the Kronecker product of matrices). Here, the matrices Ay have the form

Aky,y _ (_1)]€+1AL2V) +AL1V)

Thus,
2 22" scos sy sin sy 2 22" scos sty sin sy
A2k,uu = Z #) A2k+1,uz/ = Z #
m 2302) sin ), 1) sin
Below, we denote these matrices as Af]f,) We write (2.7) in more detail:
K m(p—1) _ @ oy 27— 1)
Hyppp = NZ A( )coskT, lﬁf_ NZ AV‘L coqu.

Using the quadrature formula (2.3), we transform functional (2.2) into the following quadratic form:

; et [Fn (g—f)zzcw + l:%l (%);M + X (2.8)

Differentiating (2.8) with respect to w

J(w)

Al we obtain

N
- oo oty . —
E Bﬂl,#pwup_FE A[prP )\cuwﬁl—O7
HsD p=1
where

!5 ) om(l—d
B’ﬂ’“p NikZ:Z: {ZCA A(Q);k’lCOSk (2]7V )cosq W(N )}7

n n N b

i 4 cg 2m(l — 2m(l —1
AZP—W%Zqu{Zkﬂlsink W(N p)sinq W(N )}

A k=1q¢=1 1=1
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This is the sought discrete analog of the eigenvalue problem
ow
E r=1 =0

The discretization error can be estimated as described in [1] (see also [6]).

3. Numerical Results. Problem (2.1) was numerically solved in a circle (k = 1) and in a disturbed
circle (epitrochoid, k = 1, k # 1). For the circle, the eigenvalues v/)\; (i = 1,2,...) are known: they are zeros
of the Bessel function derivative. A comparison of the values of \/\; calculated for the circle with exact values
shows that they are identical to the forth digit after the decimal point even on a 3 x 7 grid. Yet, this accuracy is
worse than that provided by the procedure described in [1] for the equation with constant coefficients. In addition,
we performed calculations for the epitrochoid [p(¢) = ¢(1 + e¢™), € = 0.0625, n = 12]; for this epitrochoid, the
calculated eigenvalues are summarized in Table (3.9) in [1]. The data obtained by the present procedure are listed
in Table 1 (accurate to all signs coincident with those in [1]).

Yet another calculation run was performed for the same epitrochoid with the function

k(r,0) = ko(0.1 +r%)(sin 120 + 1.1), ko = 1071%/0.981 m? = 0.1 D.

div (k grad w) + Aw = 0, r<l,

The results are summarized in Table 2.
Thus, it can be concluded that the accuracy in calculating the eigenvalues by the present procedure is
admissible, and the discretization over spatial variables is adequate.
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